
Structured Query Language (SQL) : SELECT

SQL is a standard language for storing, manipulating, and
retrieving information from relational databases. This sheet
covers standard functionality across all systems.

General Format
SELECT {columns, aggregate functions, or subqueries}

FROM {tables or subqueries}

WHERE {filters based on columns or subqueries}

GROUP BY {columns to aggregate by}

HAVING {filters based on aggregates}

ORDER BY {specific columns or aggregate functions}

SELECT

Choose the columns, aggregates, and calculations that you
would like shown in the results of your queries. Separate the
columns using commas.

The following aggregate functions are available, but require
the use of the GROUP BY function to define the non-aggregate
columns:

MIN(), MAX(), SUM(), AVG(), COUNT()

SELECT firstname, COUNT(firstname) FROM students GROUP
BY firstname

Subqueries that return a single column and single row can be
used by enclosing the entire subquery in brackets:

SELECT firstname, COUNT(firstname) / (SELECT COUNT
(firstname) FROM students) FROM students GROUP
BY firstname

Calculations can be created by using basic mathematical
operators to add, subtract, multiply and / or divide any
numerical columns.

FROM

Choose the tables that your columns are found in. Just like
columns, use AS to alias (rename) your tables. If you are using
multiple tables, you need to join them together using one or
more columns..

Join using multiple columns by using AND, and use comparison
and logical operators to add filtering conditions directly to the
join.

WHERE

Filter the results of your query based on the initial columns by
using a mix of comparison and logical operators. Use brackets
to change the default precedence of logical operators.

Logical Operators

(Listed in order of precedence)

Comparison Operators

GROUP BY

Choose the columns that aggregation will be performed
across. (ie, all the non-aggregate columns) Separate the
columns with commas:

SELECT city, province, count(studentnumber) FROM
students GROUP BY city, province

HAVING

Filter the query using the results of aggregate functions by
using comparison and logical operators.

HAVING AVG(grade) <= 3.5

ORDER BY

Reorder the results of your query by specifying columns and a
sort direction (ASC for ascending order or DESC for descending
order), separated by commas.

ORDER BY age ASC, AVG(grade) DESC

Operator Example Result

NOT NOT a TRUE if A is FALSE

OR a OR b TRUE if A or B are TRUE

AND a AND b TRUE if A and B are TRUE

Comparison Operator Example

Equal to = WHERE age = 20

Not equal to <> WHERE age <> 20

Greater than > WHERE age > 20

Greater than or
equal to

>= WHERE age >= 20

Less than < WHERE age < 20

Less than or
equal to

<= WHERE age <= 20

Between
(inclusive)

BETWEEN 1 AND 5
WHERE age
BETWEEN 18 AND
22

In list of values or
subquery

IN (1, 3, 5)
WHERE age IN
(18, 19, 20, 21,
22)

Partial string
matching

LIKE ‘%X%Y%Z%’
WHERE firstname
LIKE ‘Tom%’

Join Type Illustration Example

Left join
FROM table_a AS a LEFT JOIN
table_b AS b ON a.key = b.key

Right join
FROM table_a AS a RIGHT JOIN
table_b AS b ON a.key = b.key

Inner join
FROM table_a AS a INNER JOIN
table_b AS b ON a.key = b.key

Full outer
join

FROM table_a AS a FULL OUTER
JOIN table_b AS b ON a.key =
b.key

Cartesian
join

FROM table_a CROSS JOIN
table_b Select Example Using

All columns SELECT * *

Specific columns SELECT firstname,
students.age

column or
table.column

Rename columns SELECT lastname
AS surname

column AS
newname

Sean Carney http://www.seancarney.ca SQL Training & Development

Quick Reference Card
Cheat Sheet

